论文部分内容阅读
针对目前流行的显著性检测算法不能精确反映显著性信息的问题,提出一种基于超像素融合方法的显著性检测算法.首先对图像进行超像素分割,在保证高质量的图像目标边缘信息前提下,建立以超像素为节点的图模型;然后计算超像素邻接矩阵,将该图模型转化为最小生成树模型.通过OTSU算法自适应地确定最佳阈值,根据该阈值将最小生成树模型的部分节点进行融合,获得大超像素分割区域;最后利用大超像素的颜色和相互距离信息,获得高质量的显著性图.实验结果表明,相对于其他检测方法,该算法可以更有效地检测出图像中的显著目标,并能达到接近