论文部分内容阅读
在个性化信息推荐服务中,协同推荐作为一种基本的信息过滤方法得到广泛的应用,它根据和目标用户具有相似行为的用户对资源的评价来进行推荐.但是,我们的研究发现,协同推荐算法所获得的相似用户群和实际用户的概念层次没有关系,这和我们的直觉是矛盾的,这驱使我们在协同推荐算法中考虑进用户的分类信息.实验结果表明,这样的方法是有效的,它和传统协同过滤相比具有更高的推荐精度.