论文部分内容阅读
针对病毒分类器在实际应用中存在的更新速度慢、对未知病毒检测能力不足等问题,对批量主动学习理论在病毒分类器训练方面的应用进行了研究,提出了一种基于信息密度的病毒分类器批量主动学习方法。该方法从基本询问策略、相似度测量及超平面夹角三个方面对待选训练样本的熵信息、信息密度及样本间的差异性进行综合衡量,实现了在一次询问过程中对多个有效新训练样本的选取。实验表明:该方法能够有效地缩减病毒分类器的训练时间,降低对训练数据的数量要求,提高系统的学习效率。