论文部分内容阅读
数值型关联规则挖掘是最优化问题而不是简单的离散问题,在大型数据库中挖掘数值型属性的关联规则具有一定的难度。为解决该问题,提出一种基于改进遗传算法的数据挖掘方法。针对数值型属性和布尔型属性的混合数据,设计一种分类并分界的编码方法;适应度函数采取范围收缩的策略,使属性边界向更精确的方向逼近;在此基础上设计出相应的交叉和变异算法,避免遗传算法的局部收敛和早熟问题;最后通过实例检验该算法的可行性。