论文部分内容阅读
高级量测体系的建设促使大量用电负荷数据增加了可观性,但由于通信等原因,量测数据中存在不良数据。文中提出一种引入改进模糊C均值(FCM)聚类算法的负荷数据辨识及修复方法,该方法利用快速爬山技术,对标准FCM聚类算法中聚类数目难以预先确定、初始聚类中心随机选取等缺点进行改进,实现用电负荷数据的精准聚类。在此基础上提取可行域矩阵及特征曲线,实现对新量测数据的辨识及修正。最后采用某地实际负荷测量数据进行分析,并通过与基于标准FCM聚类算法的对比,验证了该方法的快速性、高效性及其应用前景。