引入改进模糊C均值聚类的负荷数据辨识及修复方法

来源 :电力系统自动化 | 被引量 : 0次 | 上传用户:rebornfdgg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高级量测体系的建设促使大量用电负荷数据增加了可观性,但由于通信等原因,量测数据中存在不良数据。文中提出一种引入改进模糊C均值(FCM)聚类算法的负荷数据辨识及修复方法,该方法利用快速爬山技术,对标准FCM聚类算法中聚类数目难以预先确定、初始聚类中心随机选取等缺点进行改进,实现用电负荷数据的精准聚类。在此基础上提取可行域矩阵及特征曲线,实现对新量测数据的辨识及修正。最后采用某地实际负荷测量数据进行分析,并通过与基于标准FCM聚类算法的对比,验证了该方法的快速性、高效性及其应用前景。
其他文献
不平静的世界格局和纠结的中国经济让微观层面的企业步步惊心,对CFO而言,在面临巨大挑战之时,也赢来彰显“王道”的机会。