论文部分内容阅读
目的医学图像分割结果可帮助医生进行预测、诊断及制定治疗方案。医学图像在采集过程中受多种因素影响,同一组织往往具有不同灰度,且伴有强噪声。现有的针对医学图像的分割方法,对图像的灰度分布描述不够充分,不足以为精确的分割图像信息,且抗噪性较差。为实现医学图像的精确分割,提出一种多描述子的活动轮廓(MDAC)模型。方法首先,引入图像的熵,结合图像的局部均值和方差共同描述图像的灰度分布。其次,在贝叶斯框架下,引入灰度偏移因子,建立活动轮廓模型的能量泛函。最后,利用梯度下降流法得到水平集演化公式,演化的最后在完