基于单值中智集的协同过滤推荐算法

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:huhuairen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为缓解推荐系统中用户模糊评价带来的推荐准确性低的问题,构建基于单值中智集的协同过滤推荐模型.首先,构建用户—项目评分矩阵,划分用户评分等级,并将用户评分按照单值中智计算公式转换得到评分对应的真值隶属度、不确定值隶属度、非真值隶属度.然后,引入极端评价计算公式,将其作为极端评分惩罚系数,得到基于单值中智数分数的相似度计算公式.最后,结合杰卡德相关系数得到最终用户相似度.基于单值中智集的协同过滤推荐方法在公开数据集MovieLens上比较验证,实验结果发现融合单值中智集的方法在RMSE、MAE评价指标上均比其他方法有2%~3%的提升,能够有效提高推荐精度,更好地处理模糊问题.
其他文献
元启发算法-SVM是多分类评价模型的典型架构,在多分类综合决策判定中具有重要的理论与实践意义,为此提出了一种融合Lévy飞行和精英反向学习的鲸鱼优化算法(Lévy flight and elite opposition-based whale optimization algorithm,LFEO-BWOA)-SVM多分类评价算法.利用Lévy飞行策略替代螺旋轨迹策略更新位置信息,有效克服了鲸鱼优化算法易陷入局部寻优的不足;引入精英反向学习机制增加种群多样性,提高了鲸鱼优化算法全局寻优的能力.实验仿真结果
针对FastSLAM2.0算法粒子权值退化与粒子多样性丧失导致机器人定位建图精度下降的问题,提出了基于头脑风暴算法改进FastSLAM2.0算法.通过头脑风暴算法替换FastSLAM2.0算法重采样过程,首先将重要性采样后的粒子权值作为头脑风暴算法中个体评判的适度值,根据适度值大小差异完成K-means聚类操作;其次对聚类后的集合进行变异操作,并取消头脑风暴算法中个体选择操作,从而实现改进头脑风暴算法替代FastSLAM2.0算法重采样过程,缓解粒子的贫化现象,增加粒子多样性,最终实现对机器人定位建图精度
HYCOM(hybrid coordinate ocean model)海洋数值模式要求较高的吞吐量和相对较小的计算量,这给并行算法设计带来了巨大的挑战.针对具有高吞吐量的海洋数据同化问题,设计了一种基于区域分解的并行优化算法.首先,提出了一种灵活的文件访问方法,可以高效地从磁盘读取大量的数据,避免数据访问冲突,大幅降低磁盘寻址操作的频率.此外,设计了一种避免通信的策略,以一些额外的计算量为代价大幅减少进程间的通信量.最后,提出了一种基于管道流的通信策略,以实现无冲突的消息传递.实验结果表明,该算法与基线
针对最小化完工时间的作业车间调度问题(JSP),提出改进麻雀搜索算法(ISSA).首先设计有效的编码转换方式,形成JSP离散决策空间与麻雀搜索算法(SSA)连续搜索空间的对应关系.然后,针对SSA在求解后期易陷入局部最优,利用量子计算、正余弦搜索和警戒者数量递减策略对SSA进行改进,同时引入多邻域搜索和高斯扰动策略以弥补SSA在求解离散问题时深度发掘能力不足的弊端.最后,进行FT、LA系列10个测试问题、6种算法和2个应用实例的对比实验.结果表明,ISSA在求解JSP时,能获得更好的最小值、平均值和寻优成
针对现实信用评估业务中样本类别不平衡和代价敏感的情况,为降低信用风险评估的误分类损失,提出一种基于DESMID-AD动态选择的信用评估集成模型,根据每一个测试样本的特点动态地选择合适的基分类器对其进行信用预测.为提高模型对信用差客户(小类)的识别能力,在基分类器训练前使用过采样的方法对训练数据作类别平衡,采用元学习的方式基于多个指标进行基分类器的性能评估并在此阶段设计权重机制增强小类的影响.在三个公开信用评估数据集上,以AUC、一型、二型错误率以及误分类代价作为评价指标,与九种信用评估常用模型做比较,证明
为优化多元宇宙算法求解函数最优值的性能,提出一种改进搜索机制的全局优化多元宇宙算法(G-MVO).针对标准算法存在单一搜索机制导致算法易陷入局部最优以及过早收敛的缺陷,提出三种学习策略来增强算法性能,通过多策略交互协作降低算法复杂度并提高求解精度,设计自适应参数动态选择最佳策略,全局优化算法性能.为验证算法的有效性,算法在不同维度的八个基准函数上进行仿真实验.结果表明,该算法表现出更佳的求解精度以及收敛速度.
基于图神经网络的推荐算法可以提取传统方法无法提取用户与商品之间的关联关系.目前此类算法大多忽略了用户和商品的评论数据中所存在的一般偏好.针对这一问题,提出了一种方法,在利用图神经网络提取关联关系的同时,利用深度学习提取评论的优势提取用户和商品的一般偏好,并进行特征融合来提升推荐效果.在四组公共数据集中进行了对比实验,使用召回率和归一化折损累计增益作为评价指标,并通过消融实验验证了方法的有效性.实验表明该方法比已有相关算法的效果更好.两种网络的特征融合对推荐效果有提升作用.
针对基本黏菌算法(slime mould algorithm,SMA)易陷入局部最优值、收敛精度较低和收敛速度较慢的问题,提出精英反向学习与二次插值改进的黏菌算法(improved slime mould algorithm,ISMA).精英反向学习策略有利于提高黏菌种群多样性和种群质量,提升算法全局寻优性能与收敛精度;利用二次插值生成新的黏菌个体,并用适应度评估更新全局最优解,有利于增强算法局部开发能力,减少算法收敛时间,使算法跳出局部极值.通过求解多个单模态、多模态和高维度测试函数进行不同算法之间的对
针对属性权重未知的picture模糊多属性决策问题,提出一种基于picture模糊熵和picture模糊加权对称交叉熵的多属性决策方法.首先,基于余弦函数提出一类新的picture模糊熵,并验证该熵值满足picture模糊熵的公理化定义;其次,针对标准化处理后的picture模糊决策矩阵,以picture模糊熵确定各属性权重,同时确定正、负理想方案;再次,分别计算各方案与正、负理想方案的picture模糊加权对称交叉熵,考虑决策者的主观评价倾向以模糊折中值得到各备选方案的排序结果;最后,将所提多属性决策方
为找到最短路径,克服传统算法收敛速度慢、求解精度低等问题,提出一种融入变异交叉的改进天牛群算法(MBSO).首先将个体天牛转换成群体天牛搜索寻优;在群体进化过程中融入变异和交叉,提高全局搜索到更优结果;最后加入天牛须间长度自适应和步长自适应机制的搜索算法,改善算法的探索能力.将改进的算法通过MATLAB对TSPLIB中的数据集进行仿真实验,并用于PON网络规划问题.证明改进的天牛须算法在收敛速度和求解精度两方面较其他算法都有所提升,算法运行时间平均减少0.3 s,实验结果更接近最优解.