论文部分内容阅读
在模式分类领域,分类器特征输入的选择对分类效果是至关重要的.我们提出了一种新的基于相对熵的特征选择AdaBoost方法.在该算法中,引入相对熵度量两类间的距离.在每一轮中,选择最优特征作为二雏分量分类器的输入.随着权值的改变,在每一轮中特征的选择也不同.最后,由一组弱分类器结合而成的强分类器.实验表明,与遍历搜索的AdaBoost算法相比,该算法的检测正确率提高了5%,而时间缩短了20%以上.