论文部分内容阅读
采用进化算法求解复杂卫星舱布局问题时,算法容易陷入局部最优,且干涉计算复杂度高,计算耗时长.为提高对复杂解空间的搜索能力,基于协同进化算法,将问题分解为若干子问题求解;为减少计算耗时,子问题求解时采用了一种设计变量的变粒度策略.称上述方法为变粒度合作式协同进化算法(CCEA-CFG).卫星舱布局优化数值实验表明,与目前常用的几种布局求解算法(遗传算法、协同进化算法以及遗传/粒子群算法(QPGP))相比,CCGA-CFG(基于GA的CCEA-CFG)具有较好的计算质量、计算效率和计算鲁棒性.