高维情形的Routh定理

来源 :数学杂志 | 被引量 : 0次 | 上传用户:wdqbupt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了n维欧氏空间En中n维单形的体积有关问题.利用距离几何的理论与解析方法,建立了n维情形的Routh定理,作为其特例建立了n维情形的Ceva定理.
其他文献
本文研究了基于相依函数型数据非参数回归函数的核估计.利用稳健的方法,在一定条件下获得了与i.i.d.场合下类似的估计量的几乎完全收敛速度,推广了现有文献中的相关结论.
采用时域有限差分法(Finite-Difference Time Domain,FDTD)计算电磁场问题时需要设置适当的吸收边界条件(Absorbing Boundary Condition,ABC),从而将无限空间转化为有限空间
本文对医院经管报表的编制进行了分析,然后提出了医院经管报表的编制存在的问题,最后针对医院经管报表的编制存在的问题提出了相应对策。
本文研究了单位多圆盘加权Bergman空间AΦp(Dn)上的Toeplitz算子.利用多圆盘函数论,获得了L∞(Dn)的使得符号在其中的Toeplitz算子的半换位子是紧算子的最大自伴子代数Q,并计算了
本文研究了马氏环境中马氏链构成的随机变量之和的概率不等式问题.利用了结尾的方法,获得了马氏环境中马氏链构成的随机变量之和的尾部概率不等式,作为结果的应用,给出了将过
本文研究了群在von Neumann代数上作用的自由性和遍历性问题.利用投影和群SL2(R)的Iwasawa分解,得到了可数离散群在交换von Neumann代数上作用的自由性的等价刻画,证明了SL2(R)在