论文部分内容阅读
针对雷达信号分选中常见的聚类数目难确定、数据簇形状识别、异常数据敏感等问题,提出了基于NeiMu(Neighboring Mutually)的雷达信号聚类分选算法。该算法首先以信号脉冲为点、各点间的欧氏距离为线构建距离矩阵,然后在进行干扰数据剔除的情况下选定合适k值完成聚类矩阵的构建,最后采取遍历聚类矩阵的方法输出聚类结果,在删除无效的聚类后实现了雷达信号的聚类分选。通过仿真可知该算法在选取合适k值的情况下具有极高的正确率,证明了其有效性和可靠性。