论文部分内容阅读
地下水位埋深预测是有效实施节水措施、合理控制地下水位的前提与保证。鉴于地下水位埋深与引水量、降水量、蒸发量、排水量、地下水开采量等因素之间存在复杂的非线性关系,提出了基于改进遗传算法的BP神经网络模型用于地下水位埋深预测,弥补了BP神经网络本身易陷入局部最优值的缺陷;同时在遗传算法中改进了自适应交叉、变异概率算法,提高了神经网络的逼近能力和预测精度,并采用了Matlab软件实现了BP神经网络编程。通过不同模型在河套灌区解放闸灌域2000-2013年地下水位埋深模拟与预测,结果表明改进遗传算法优化的BP神经