论文部分内容阅读
Ion mobility spectrometry (IMS) is a very fast, highly sensitive, and inexpensive technique, it permits efficient monitoring of volatile organic compounds like alcohols. In this article, positive ion mobility spectra for six alcohol organic compounds have been systematically studied for the first time using a high-resolution IMS apparatus equipped with a discharge ionization source. Utilizing protonated water cluster ions (H2O)nH+ as the reactant ions and clean air as the drift gas, alcohol organic compounds, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol and 2-octanol, all exhibit product ion characteristic peaks in their respective ion mobility spectrometry, that is a result of proton transfer reactions between the alcohols and reaction ions (H2O)nH+. The mixture of these alcohols, including two isomers, has been detected, and the result shows that they can also be distinguished effectively in the ion mobility spectrum. The reduced mobility values have been determined, which are in very well agreement with the traditional 63Ni-IMS experimental values. The exponential dilution method was used to calibrate the alcohol concentrations, and a detection limit available for the alcohols is in order of magnitude of a few ng/L.