论文部分内容阅读
现有基于深度学习的远红外图像行人检测方法对计算力要求高,需要高功耗GPU计算平台,应用于嵌入式平台时,无法满足实时性和准确率需求。针对该问题,本文提出了一种新型实时红外行人检测方法,该方法使用MobileNet作为YOLOv3模型中的基础网络,辅助预测网络层以深度可分离卷积替换标准卷积,将模型改进为轻量红外行人检测模型。基于新方法构建的模型采用CVC红外行人训练集离线训练,并部署于嵌入式平台,实现红外行人在线实时检测。实验结果表明,与改进前方法相比,模型大小为65 M,约为YOLOv3的27%,新模