论文部分内容阅读
污水处理过程的性能监测与故障诊断,对于保障污水处理过程正常运行及保证出水质量达标具有重要意义.针对污水处理过程数据具有非线性、不确定性及且易受随机噪声影响等特征,提出了一种新的基于通勤时间距离的LE流形学习算法实现对复杂过程数据的特征提取.改进算法采用通勤时间距离方式进行样本间的相似度衡量并构造邻域图,理论分析和仿真测试表明改进算法可有效克服基本LE算法的邻域参数敏感问题并提高了算法的鲁棒性.将基于通勤时间距离的LE流形学习算法用于污水处理过程故障检测建模,在低维流形子空间构造综合统计量进行过程监测.应用