论文部分内容阅读
手势识别作为人和机器之间重要的交互手段,在日常生活中具有广泛的应用场景。基于无线信号特别是WiFi的手势识别由于其无接触、成本低等优点成为当前热门的方式。为解决传统基于无线信号手势识别算法没有充分利用信号相位特征的缺点,本文提出利用WiFi信道状态信息幅值和相位结合的方式进行手势识别。通过子载波降维和动作曲线提取对接收的WiFi信号进行处理,并将信号的幅值和相位结合,利用机器学习算法对数据进行训练和分类,实现了单手向前、单手向后、单手向左、单手向右、单手向上和单手向下六种手势的识别。实验结果显示,本