以金属镁冶炼废渣固化含油污泥和煤,采用TGA/DSC1型全自动热分析仪,研究了其升温速率10℃/min下的失重情况,计算了其燃烧动力学参数,分析了其燃烧特性及机理。采用MG5/Vario plus烟气分析仪,分析了该水煤浆在氧化气氛下的污染物排放特性。通过10 kg/h德士古气流床气化小试实验装置,模拟了该水煤浆的气化过程。结果表明,该水煤浆的燃烧机理为多段一级反应;金属镁废渣的加入可以大幅度降低水煤浆的SO_(2 )排放浓度和排放时长,对NO
x的影响有限;油泥的加入使合成气中H
将细菌纤维素(BC)作为纳米TiO2的负载模板制备BC@TiO2光催化膜,通过FTIR、SEM和TG分别对BC@TiO2光催化膜的结构、TiO2纳米颗粒在细菌纤维素中的负载形貌、尺寸和热稳定性进行分析;通过光催化降解染色废水,将降解后的染色废水用于染色回用,并与初次染色样的上染率、表观颜色深度、颜色特征值和染色牢度进行对比。结果表明,该BC@TiO2光催化膜在150 min时,染色废水中杂质的脱除
以沙柳木粉(SPP)为原料,采用氢氧化钠、氯乙酸和无水乙醇对SPP进行羧甲基化改性,制得羧甲基化沙柳木粉(CMS),经过1-丙烯基-3-甲基咪唑氯盐溶解后,通过刮膜法制得羧甲基化沙柳木粉膜(CMSM)。采用红外光谱仪(FTIR)分析SPP和CMSM结构,运用扫描电镜(SEM)对吸附前后CMSM的表面形态进行表征。考察吸附条件对CMSM吸附四环素(TC)性能的影响,确定CMSM的吸附动力学、吸附等温线,探讨CMSM的吸附机理。吸附结果显示:当吸附温度为25℃,吸附时间为2 h,pH值为6,TC溶液初始浓度为
利用三亚乙基四胺(TETA)和聚乙二醇(PEG-400)对市售的木质素磺酸钙进行了改性,并研究了改性木质素磺酸钙对溶液中氟离子(F-)的吸附行为。结果表明,改性后的木质素对F-表现出了一定的吸附能力。在实际吸附实验中,改性木质素对F-的平衡吸附量约为1.6 mg/g,理论饱和吸附量为2.17 mg/g。通过对改性木质素对F-的吸附动力学分析,其吸附行为符合Langmuir模型和Lagergren准二级动力学。
以30%H2O2溶液、35%HNO3溶液和10%KOH溶液对生物组织和塑料进行消解。结果表明,选取40℃作为对生物组织和塑料消解能力的温度是恰当的。生物组织消解中,3种试剂消解24 h的消解率显著高于消解1 h的消解率。在1 h时长下,35%HNO_3溶液的消解率最高,为(77.05±2.86)%;30%的H2O2溶液消解率最低,为(73.76±0.63)%。在时长24 h下,10%KOH溶液消解
由于g-C
3N
4存在着表面积小、光生载流子复合严重等问题,限制了光催化材料的光催化活性,故以g-C
3N
4/TiO
2光催化复合材料为实验对象,提出g-C
3N
4/TiO
2光催化复合材料光催化活性提升路径研究。选取适当的实验试剂与仪器,并对试剂进行一定的处理,制备g-C_3N_4纳米片、TiO
2纳米片与g-C
为探究果色和成熟度对樱桃番茄果实挥发物的影响,用顶空固相微萃取-气相色谱-质谱联用法测定育种自交系材料金珠(橙)、黑樱桃1(紫)、1号(粉)、红珍珠(红)在绿熟期、转色期和红熟期的挥发物。分析发现,橙色番茄挥发物明显高于红色和粉色番茄。橙色番茄在绿熟期,紫色番茄在转色期和红熟期挥发物最高,而粉色番茄挥发物始终最低。气味强度由挥发物质量浓度和嗅觉阈值决定。3-甲基-丁醛、(E,E)-2,4-庚二烯醛、1-戊烯-3-酮、己醛、苯甲醛和(Z)-3-己烯-1-醇对番茄气味贡献较大。红色、橙色和紫色番茄分别在绿熟期
以丙烯酰胺(AM)、丙烯酸(AA)和文冠果活性炭(XSBAC)为原料,制备文冠果活性炭水凝胶(XSBACH),并应用于亚甲基蓝(MB)的吸附。利用比表面积分析仪(BET)、红外光谱仪(FTIR)等设备对XSBACH的结构进行表征。探讨了亚甲基蓝溶液的浓度、pH值、温度及时间对XSBACH吸附量的影响。结果表明,在吸附时间为120 min, MB溶液浓度为500 mg/L,反应温度为303 K时,XSBACH对MB的吸附量最大,为295.36 mg/g。吸附过程符合伪二级动力学模型,等温吸附过程符合Lang
以副产物4,4’-双(三氯甲基)联苯为原料,经碱性水解一步反应合成出4,4’-联苯二甲酸。考察反应物料摩尔比、反应温度、反应时间对4,4’-联苯二甲酸产品收率的影响,得到优化工艺条件:氯苯为溶剂,4,4’-双(三氯甲基)联苯与10%氢氧化钠溶液的摩尔比为1∶9,反应温度为105℃,反应时间为14 h。在上述条件下,4,4’-联苯二甲酸的收率为95.25%,纯度可达99.20%,通过红外光谱、核磁共振氢谱及高效液相色谱等对产物进行了表征。
通过多隔层根际箱培养实验研究了磺胺类抗生素磺胺甲恶唑(SMZ)和磺胺甲基嘧啶(SM1)对油菜种植土壤不同根际微域的土壤脱氢酶(DHA)和过氧化氢酶(CAT)的影响。结果显示,SMZ胁迫下,低浓度处理组促进了根际及近根际区的DHA活性,而高浓度处理组则抑制了其DHA活性。同时,各浓度处理组均抑制了主体土壤区及近主体土壤区中DHA的活性。各浓度处理组均诱导了根际及近根际区的CAT活性,却抑制了主体及近主体区的CAT的活性。SM1胁迫下,各浓度处理组均诱导了近根际区的DHA活性,却抑制了根际区及主体土壤区及近主