论文部分内容阅读
针对目标在图像边界上带来的检测误差,提出了边界显著性算法。首先在多尺度下对图像进行超像素分割,计算边界差异,估计其边界显著性。而后对所有超像素进行模式挖掘,得到显著性种子,并与边界显著性相结合。最后通过显著性传播得到最终显著图。在三个公开的测试数据集上将本文提出算法与其他18种主流的现有算法进行对比。大量实验结果表明,所提出的算法在不同数据集上都优于目前主流算法。