论文部分内容阅读
针对传统异步电动机故障诊断方法中存在的局限性,在对异步电动机故障诊断的特点和要求基础上,提出了一种基于神经网络的信息融合故障诊断方法。对所采集异步电动机的电压、电流、绕组温度等进行数据预处理与特征提取、归一化后,把这些特征参数作为神经网络的输入,经过学习训练,以判断系统状态,识别系统的故障。仿真实验结果表明其故障诊断是可行和有效的。