论文部分内容阅读
针对复杂场景下的动作识别,提出一种基于稀疏编码的时空金字塔匹配的动作识别方法.通过稀疏编码的方法学习更具有判别性的码书和计算局部块(cuboids)的稀疏表示;然后基于max pooling的时空金字塔匹配进行动作分类.该方法在KTH和YouTube两大公开数据集上进行了评价,实验结果表明,与基于K-means的时空金字塔匹配方法相比,该方法提高了2%-7%左右的识别率,在复杂的视频中取得了较好的识别效果.