论文部分内容阅读
文本情感极性分类是文本情感分析首先要解决的关键问题.在分析影响文本情感分类的各类因素的基础上,首先构建了情感词典,并进行情感特征选取以及情感特征加权,然后使用SVM分类的方法对文本进行情感识别及分类,最后在语料数据集的基础上,在单机平台上和Spark分布式计算平台上执行分类模型,对比分析其分类精度和时间代价.实验结果验证了本文构建的情感极性分类模型在单机和分布式云平台上中的有效性.