一种基于深刻蚀的硅基周期波导微腔

来源 :光学学报 | 被引量 : 0次 | 上传用户:jick85726
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究了一种基于深刻蚀的硅基周期波导一维光子晶体微腔,采用时域有限差分(FDTD)方法对设计的微腔结构进行了模拟分析;讨论了深刻蚀对微腔品质因数的影响,计算表明采用深刻蚀可有效地保持高Q值并能保证微腔的机械强度。采用电子束光刻(EBL)结合感应耦合等离子体(ICP)刻蚀制作了绝缘硅(SOI)的周期波导微腔,使用扫描电子显微镜(SEM)和原子力显微镜(AFM)对器件形貌进行表征,观察到深刻蚀的衬底二氧化硅高度约为80 nm。通过波导光栅耦合光纤输入宽带光源信号对微腔器件进行光学表征,传输光谱测试表明该深刻蚀微腔器件Q值达5×103,插入损耗小于-2 d B。该深刻蚀的硅基周期波导微腔可用于集成光传感器和片上波分复用滤波器等应用。 A one-dimensional photonic crystal microcavity based on deep etching of silicon-based periodic waveguides was studied. The time-domain finite difference (FDTD) method was used to simulate the design of the microcavity structure. The effect of deep etching on the quality factor of the microcavity was discussed The calculation shows that deep etching can effectively maintain the high Q value and ensure the mechanical strength of the microcavity. The periodic waveguide microcavity of silicon-on-insulator (SOI) was fabricated by electron beam lithography (EBL) coupled with inductively coupled plasma (ICP) etching. The morphology of the device was characterized by scanning electron microscopy (SEM) and atomic force microscopy The deep etched substrate silicon dioxide was observed to be about 80 nm in height. The optical characterization of the microcavity was performed by using the waveguide grating coupled optical fiber input broadband light source signal. The transmission spectroscopy showed that the Q value of the deep etching microcavity device reached 5 × 103, and the insertion loss was less than -2 d B. This deep etched silicon-based periodic waveguide microcavity can be used in applications such as integrated optical sensors and on-chip wavelength division multiplexing filters.
其他文献
以量子点电致发光器件(QLED)中能级分布和载流子浓度的关系为理论基础,研究了QLED发光层能级变化与驱动电压的关系,建立了数学模型。以CdSe/ZnS核壳结构量子点为发光层,计算
目的 研究脑肿瘤热疗中脑水肿与射频电极温度和作用时间的关系.方法应用不同射频电极温度和作用时间分别对35只成年兔脑进行加热,并测量脑水肿和脑毁损的范围,采用计算机统计软件SPSS 10.0进行数据分析.结果脑水肿的程度与射频电极温度和作用时间相关,脑水肿和热疗剂量之间的回归方程呈线性关系.结论根据射频热疗剂量和脑水肿带之间的回归方程,我们可以在临床肿瘤热疗工作中预测脑水肿的范围,选择最合适的射频电