论文部分内容阅读
有监督学习算法是机器学习中的一类重要算法,该类算法要求外界提供含监督信号的样本作为训练数据。虽然机器学习领域提供了许多基准测试数据,但很多情况下需要自己生成训练样本。给出了一种交互式训练样本获取方法:通过对原始图像进行一种或多种混合的随机变换,用户挑选那些能被人眼识别的样本作为有效样本加以保存。实验结果表明,所提方法产生的图片能模拟摄像头在不同角度、姿态、光照、遮挡等各种复杂场景下拍摄的图像的效果。用系统生成的训练样本训练朴素贝叶斯(NB)分类器,能达到95.042%的识别精度,结果优于UCI人工字