论文部分内容阅读
深度学习技术在图像识别领域已经得到广泛应用,识别准确率超过人类平均水平。然而最近的研究表明,深度神经网络的性能会因对抗样本的存在而大幅降低。攻击者通过在待识别的图像中添加精心设计的微小扰动,误导分类器做出错误预测。另一个方面,在数字空间生成的扰动也能够转移到物理空间并用于攻击。为此,本文提出了一种基于二维码对抗样本的物理补丁攻击方法。将生成的二维码贴在道路交通标志表面的指定位置,使得分类器输出错误的分类。实验结果表明了本文方法的有效性,同时,将数字空间生成的对抗样本用于物理空间中的交通标志攻击,仍可