基于投影绝对中位离差的分布相等性检验

来源 :应用数学 | 被引量 : 0次 | 上传用户:wzy_shun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为检验两个分布的相等,我们给出基于投影寻踪、Bootstrap方法和数论方法的统计量,并讨论它的极限分布和Bootstrap逼近.最后我们给出一些模拟.
其他文献
本文介绍了偏最小二乘回归 (PLS)的建模方法 ,比较了PLS与普通最小二乘回归 (OLS)及主成分回归的应用效果 ,并总结了PLS回归的基本特点 .
本文在前人[1,2]的基础之上,以凸泛函的次梯度不等式为工具,将Jensen不等式推广到Banach空间中的凸泛函,导出了Banach空间中的Bochner积分型的广义Jensen不等式,给出其在Bana
本文给出了一个含公共开支的R&D模型,并对模型进行了均衡分析及动态分析,得出在一定的条件下,模型存在局部稳定的均衡点.
本文通过对图的Seidel变换进一步研究,得到了一些新的强正则图.
本文证明了如下具有(a),(b),(c)性质算子和的不动点存在性,唯一性和迭代过程.作为应用,考虑了多项式型微分方程的求解问题.
本文研究了随机游走和离散的倒向随机微分方程.把随机游走到布朗运动的收敛推广到L2情形;而且根据倒向随机微分方程的理论框架研究了离散的倒向随机微分方程,得到了离散的倒
信号的采样问题,就是探讨采样集满足什么条件时,能够重建信号,如何重建信号.对于f(x)∈L2(R),这里证明了,当采样集满足一定的条件时,适当选择小波基,可以重建信号,并且考虑了