论文部分内容阅读
针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电力负荷组合预测模型。首先,对商业电力负荷变化的周期规律与随机因素的复杂影响进行了分析;然后,结合以上分析,选用SARIMA和GRNN为单一预测模型对商业电力负荷进行预测