论文部分内容阅读
对于变系数微分方程,在每个离散子区间上用函数去逼近系数比用一常数去代替系数,所得到的一系列近似微分方程有更高的精度.通常的差分格式建立在解函数在子区间上的Taylor展开式的近似的基础上,这样要求函数相对于网格是缓变的.而基于系数Taylor展开的近似式和局部基的引入,使得方法能在子区间上精确表达比二次函数丰富得多的解函数.由此构造的差分格式能在子区间上反映解具有迅速变化(如边界层,高振荡)的复杂的物理现象.数值实验(边值问题、特征值问题)显示了新方法比传统方法有更满意的效果.