论文部分内容阅读
提出了基于支持向量机的焊管焊缝缺陷识别方法和步骤.对焊缝图像采用了图像增强、形态学处理、边缘检测等操作,解决焊缝图像在输入时受到外界干扰带来的图片噪声过多、缺陷边缘模糊和对比度低等问题,便于对焊缝图像进行特征提取.结合焊缝缺陷样本多分类的特点,对焊缝图像进行分类时使用SVM"一对一"聚类结构并对样本进行识别.实验结果表明,该模型具有识别精度高、速度快、容易实现等优点,适合对焊管焊缝缺陷的识别.