论文部分内容阅读
标记分布是一种新的机器学习范式,能很好地解决某些标记多义性问题,可看作多标记的泛化。传统的单标记学习和多标记学习均可看作标记分布学习的特例。已有的标记分布学习算法中,基于算法改造的AA-KNN(Algorithm Adaptation-KNN)是一种高效的算法,但任何涉及K近邻求解问题的算法在处理不同数据集时,参数K值的选取都是一个难题,不同的K值得到的结果明显不同。基于此,将自然最近邻居的概念引入标记分布学习,提出一种新的标记分布学习方法。对数据集使用自然最近邻居搜索算法查找每个样本的自然邻居,取自然邻