论文部分内容阅读
针对传统基于小波变化的图像超分辨率重构问题,提出了一种结合小波去噪和广义回归神经网络的图像重构算法。首先通过整数小波变换将图像的低频和高频部分进行分解。然后利用中值边缘检测作为预测器并在编码之前设置了误差映射。最后对传统广义回归神经网络的原理进行了分析,并设计了相应的广义回归神经网络。此外,利用期望值最大算法对广义回归神经网络模型参数估计进行了优化。通过超分辨率图像重建仿真实验对提出算法的有效性进行了验证。实验结果表明:提出算法具有较好的去噪能力和较高的重构精度。