论文部分内容阅读
在人机协作领域,针对动作手势相似度大,环境复杂背景下手势识别率低的问题,提出一种基于YOLO深度卷积神经网络检测识别缝纫手势的方法。以4种复杂缝纫手势作为检测对象并构建缝纫手势数据集,通过在YOLOv3低分辨率的深层网络处增加密集连接层,加强图像特征传递与重用提高网络性能,实现端到端的缝纫手势检测。实验结果表明,在缝纫手势测试集中,训练后的模型平均精度均值为94. 45%,交并比为0. 87,调和平均值为0. 885。通过对比区域卷积神经网络、YOLOv2以及原始YOLOv3算法,提出的改进方法检测