Towards Fast and Efficient Algorithm for Learning Bayesian Network

来源 :Wuhan University Journal of Natural Sciences | 被引量 : 0次 | 上传用户:sycamorelee
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms for this problem. Considering the unreliability of high order condition independence(CI) tests, and to improve the efficiency of a dependency analysis algorithm, the key steps are to use few numbers of CI tests and reduce the sizes of conditioning sets as much as possible. Based on these reasons and inspired by the algorithm PC, we present an algorithm, named fast and efficient PC(FEPC), for learning the adjacent neighbourhood of every variable. FEPC implements the CI tests by three kinds of orders, which reduces the high order CI tests significantly. Compared with current algorithm proposals, the experiment results show that FEPC has better accuracy with fewer numbers of condition independence tests and smaller size of conditioning sets. The highest reduction percentage of CI test is 83.3% by EFPC compared with PC algorithm. Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph (DAG) is the foundation for dependency analysis algorithms for this problem. Considering the unreliability of high order condition independence (CI) tests , and to improve the efficiency of a dependency analysis algorithm, the key steps are to use few numbers of CI tests and reduce the sizes of conditioning sets as much as possible. Based on these reasons and inspired by the algorithm PC, we present an algorithm , named fast and efficient PC (FEPC), for learning the adjacent neighborhood of every variable. FEPC implements the CI tests by three kinds of orders, which reduces the high order CI tests significantly. Compared with current algorithm proposals, the experiment results show that FEPC has better accuracy with fewer numbers of condition independence tests and smaller size of conditioning sets. The highest reduction percentage of CI test is 83.3% by EFPC compared with PC algorithm.
其他文献
水性防腐带锈涂料又被称为锈面上的涂料、直接不用去锈型涂料,换言之就是一种新型的可以直接涂刷于有残余锈迹的金属基材表面的涂料,多用作金属保护的底漆,将它涂刷于有残锈的金属基材表面,不需对锈蚀金属进行非常彻底的除锈,因而具有减少涂漆前处理的成本、减轻劳动强度、保护环境及保护人类身心健康等优点,其中转化型水性涂料更具有良好广阔的应用市场前景。其中转化型涂料中含有一种成分,为转锈剂,它能与铁锈发生作用,会
磁性聚合物微球集磁响应性与聚合物的功能性于一体,在药物释放、生物分离、分析检测、催化等领域有广泛的应用,其中亚微米尺度的磁性聚合物微球更适合于生物分离等体外应用。这
随着现代社会工业的快速发展,经济和社会在不断进步,但同时环境问题也日益突出,工厂废气、废水的排放,汽车尾气、重金属排放及自然条件造成的重金属离子污染,越来越危害人们的生活
本文是我在硕士期间做的主要工作。论文主要内容是研究密度泛函近似的主要误差,研究体系主要是线型氢分子链、烷烃分子、烯烃分子等。   自然界中各种材料都有其特定的物理
烟酰胺辅酶(NAD(P)H)是生命体内最为重要的氧化还原辅酶之一,参与体内400多个氧化还原反应。近年来,有机化学家和生物化学家对辅酶在体内发生负氢转移的机制作了大量研究工作,特
荧光分析方法具有较高的灵敏度,较好的选择性,并且仪器设备简单,可以实现对痕量物质的快速检测,因此在化学、生物、医学和工业等研究中有重要的应用。近年来,新型荧光探针材料的设
本文追踪当前有机负氢化学研究热点,以类汉斯酯结构的3,5-双官能团-1,4-二氢吡啶为研究对象,进行了有关的热力学、动力学和相关机理的基础研究,为模拟生命体内NAD(P)H参与氧化还原
学位
近年来,随着网络直播的爆发式增长,上百家平台,超过百亿的规模,3亿多用户,上市公司和明星企业崛起,俨然成为产业和资本的盛宴。对于网络直播平台的由来,它的现状,网络直播的
分子印迹聚合物的历史及发展、有序酚醛树脂介孔聚合物材料的制备进展、NNAL净化研究情况以及苯胺降低技术的总结在本论文中首先得到具体介绍。在此基石上,实验选择NNAL的三种