论文部分内容阅读
数值求解延迟微分方程的Runge-kutta方法和θ-方法已经有了较深入的研究。本文适当改造求解常微分方程的Rosenbrock方法,构造了一类求解延迟微分方程的Rosenbrock方法,证明了这类方法是GP-稳定的,而且这类方法的GP-稳定性与求解常微分方程的Rosenbrock方法的A-稳定性等价。数值试验表明这类方法是有效的。