面向不均衡数据集的过抽样数学模型构建

来源 :计算机仿真 | 被引量 : 0次 | 上传用户:Windows365666151
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以提升不均衡数据集内少数类样本的分类性能为目标,从样本采样以及分类器优化两方面构建面向不均衡数据集的过抽样数学模型。利用数据分布不均衡条件下的少数类过抽样算法处理不均衡数据集内少数类样本,算法将少数类样本作为中心,利用新生成的虚拟少数类样本改善不平衡数据集内数据不均匀分布情况,将完成处理的少数类样本与多数类样本结合建立新训练样本集合,新训练样本集合输入经过熵值法优化的混合核ε-SVM分类器中训练分类器,将测试样本集输入完成训练的优化混合核ε-SVM分类器中,实现不均衡数据集内样本精准分类。实验结果表
其他文献
为了解决多模态优化问题,对郊狼优化算法进行研究,提出了一种基于确定性拥挤的多模态郊狼优化算法—DCCOA。将小生境技术的确定性拥挤方法引入郊狼优化算法中,定义了新的郊狼进化机制,改进了郊狼群组文化趋势的计算方法。同时,为了更真实地模拟郊狼的种群生活,算法还定义了2只阿尔法郊狼并且采用了权重法更新郊狼的社会状况。最后将DCCOA与其它智能优化算法在多个典型基准函数上进行不同决策变量维数的多次对比实验。实验结果表明,小生境技术的引入进一步促进了算法在探索和勘探之间的平衡,提升了郊狼优化算法在多模态情况下的全局