Gap induced mode evolution under the asymmetric structure in a plasmonic resonator system

来源 :Photonics Research | 被引量 : 0次 | 上传用户:orallove
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The modulation of resonance features in microcavities is important to applications in nanophotonics.Based on the asymmetric whispering-gallery modes(WGMs)in a plasmonic resonator,we theoretically studied the mode evolution in an asymmetric WGM plasmonic system.Exploiting the gap or nano-scatter in the plasmonic ring cavity,the symmetry of the system will be broken and the standing wave in the cavity will be tunable.Based on this asymmetric structure,the output coupling rate between the two cavity modes can also be tuned.Moreover,the proposed method could further be applied for sensing and detecting the position of defects in a WGM system. The modulation of resonance features in microcavities is important to applications in nanophotonics. Based on the asymmetric whispering-gallery modes (WGMs) in a plasmonic resonator, we theoretically studied the mode evolution in an asymmetric WGM plasmonic system. Exploring the gap or nano-scatter in the plasmonic ring cavity, the symmetry of the system will be broken and the standing wave in the cavity will be tunable. Based on this asymmetric structure, the output coupling rate between the two cavity modes can also be tuned. Moreover, the proposed method could further be applied for sensing and detecting the position of defects in a WGM system.
其他文献