论文部分内容阅读
The multiplex polymerase chain reaction (PCR) technique was applied to detect the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) specific target cDNA fragments in the present study. The target cDNA fragments of SARS-CoV were synthesized artificially according to the genome sequence of SARS-CoV in GenBank submitted by The Chinese University of Hong Kong, and were used as simulated positive samples. Five primers recommended by World Health Organization (WHO) were used to amplify the fragments by single PCR and multiplex PCR. Three target cDNA fragments (121, 182 and 302 bp), as well as the three different combinations of any two of these fragments, were amplified by single PCR. The combination of these three fragments was amplified by multiplex PCR. The results indicated that the multiplex PCR technique could be applied to detect the SARS-CoV specific target cDNA fragments successfully.
The multiplex polymerase chain reaction (PCR) technique was applied to detect the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) specific target cDNA fragments in the present study. The target cDNA fragments of SARS-CoV were synthesized artificially according to the genome sequence of SARS-CoV in GenBank submitted by The Chinese University of Hong Kong, and were used as simulated positive samples. Five primers recommended by World Health Organization (WHO) were used to amplify the fragments by single PCR and multiplex PCR. Three target cDNA fragments (121, 182 and 302 bp), as well as the three different combinations of any two of these fragments, were amplified by single PCR. The combination of these three fragments was amplified by multiplex PCR. The results indicated that the multiplex PCR technique could be applied to detect the SARS-CoV specific target cDNA fragments successfully.