【摘 要】
:
为解决视频目标跟踪过程中目标框和预测框边界不重叠情况下无法优化的问题,提出了一种距离交并比(distance intersection over union, DIOU)回归的孪生网络目标跟踪算法.通过孪生网络和区域建议网络(region proposal network, RPN)保持实时效果,将距离交并比引入回归分支,结合重叠率和中心点距离构建损失度量,加快模型训练的收敛速度,为边界框提供更直
论文部分内容阅读
为解决视频目标跟踪过程中目标框和预测框边界不重叠情况下无法优化的问题,提出了一种距离交并比(distance intersection over union, DIOU)回归的孪生网络目标跟踪算法.通过孪生网络和区域建议网络(region proposal network, RPN)保持实时效果,将距离交并比引入回归分支,结合重叠率和中心点距离构建损失度量,加快模型训练的收敛速度,为边界框提供更直接的回归方向.同时,使用Resnet50网络替换SiamRPN网络的特征提取网络,进一步提高目标特征表示
其他文献
针对YOLOv3模型对真实道路环境下近、远端目标车辆检测率低、鲁棒性差的问题,给出了一种基于改进YOLOv3模型的车辆多目标检测模型——YOLOv3-Y模型。模型基于Darknet-53特征提取网络,将网络输出的8倍降采样特征图与4倍降采样特征图进行拼接,建立104×104尺度的检测层;在包含4个类别的车辆数据集中,利用K均值(K-means)聚类算法选取出12个先验框并分别匹配到4个不同尺度的检
人体姿态估计是计算机视觉研究领域的重要方向之一,广泛应用于人类活动识别、人机交互等方面,但人体姿态估计方法准确度上通常表现较差。基于上述问题,提出一种基于热图引导连接(heatmap-guided connection, HGC)的人体姿态估计方法,用于在保持低算法复杂度的同时提高回归精度。HGC方法利用关键点热图引导关键点回归,并采用一种尺度自适应热图估计,以处理人体实例在尺度的多样性;然后,通
为了提高数字媒体物联网(DMIoT)的数据库资源调度效率,提出一种基于机器学习的快速调度(MLS)方法.该方法利用数据融合技术,以实现用户体验质量的优化.MLS采用一种多模式数据融合方法,以建立不可控用户数据与可控网络相关因素之间的体验质量映射.MLS建立了融合结果的自动体验质量优化模型,能够自动调整与网络相关的系统数据,以实现最佳的用户满意度.仿真结果表明,MLS将大大提高体验质量水平,并适应动
高效准确的流线绘制一直是流场可视化的重要研究内容,流线可以对流场的重要特征进行有效的稀疏表示,但流线需要长期的粒子追踪过程及大量的积分计算,在面向大规模流场可视化时时间效率较低,需要高性能计算设备进行辅助计算.本文通过设计一种基于深度学习的高精度流线生成算法,将初始的低精度流线快速映射为稠密的高精度流线,可以在较短的时间内快速生成可靠的流线可视化结果,并在此基础上设计了交互式实时流场可视化系统,涵
目前而言,我国标识识别技术正处于飞速发展阶段,具体体现在处理精度、再现性、灵活性、适用面、信息压缩等方面,但是,在实际发展过程中,该技术的发展还是受到了实际需求的限制.深度学习模型运算量大,难以在轻量级嵌入式设备上运行,工业生产中噪声种类繁多复杂,影响识别准确性.针对上述问题,本文提出一种基于卷积神经网络的标识识别技术,利用改进的Canny边缘检测算法,来增强对边缘信息提取时的鲁棒性,实现在高噪声
本文研究了基于神经网络随机梯度下降法的手写数字识别方法。首先,阐述了基于MNIST手写数字图像的神经网络识别模型;其次,分析了基于神经网络随机梯度下降法的手写数字识别方法的实现步骤;最后,完成的实验表明该方法的识别准确率较高。
深度学习需要用到大量有标签的数据,即使在大数据时代,能用的有标签数据也不多,从而需要将深度学习与半监督学习结合起来。目前,全连接层已被证实,在迁移学习中可以起到很好的作用。在迁移学习的背景下,针对半监督分类问题,笔者基于marginGAN生成对抗网络使用了基于Dropout算法的全连接神经网络作为分类器,分类器的损失函数增加了拉德马赫正则项,验证了拉德马赫在半监督分类任务中的有效性。
目的:为了提高肺部疾病的临床诊断准确率及其手术成功率,需要对肺气管的影像进行准确的分割。方法:提出一种全新的针对肺气管图像的三维图像分割算法,将深度学习中的对抗生成网络结构(GAN)、密集连接网络模型(Dense Net)以及多尺度连接(Multi Scale)结构应用到临床三维图像的分割中。结果:该方法可以从读取数据块中做到像素级的分割,根据相对坐标位置对分割结果进行投票,结合最大联通分量后处理
为了提高带式输送机运行效率并降低设备能耗,提出一种基于计算机视觉技术的带式输送机智能调速控制系统,并在1506运输大巷带式输送机中进行工业应用。结果表明:(1)将计算机视觉技术应用到输送机煤流量监测中具有监测点布置便捷、监测结果可信度高等优点,同时也可为后续矿井带式输送机无人值守提供一定基础。(2)将模糊控制应用到带式输送机智能阶梯调速中,依据运输的煤炭变化情况制定合理的煤流量、运输速度区间,不仅
针对目标检测模型过大且计算复杂而导致其无法应用于无图形处理器嵌入式终端的问题,通过改进YOLO算法,提出一种基于深度学习的水面目标检测模型压缩方法.采用带有深度可分离卷积和轻量级注意力模型的改进网络替代特征提取网络DarkNet,通过多尺度特征融合进行模型压缩,引入k-means++算法与Mish激活函数,保证模型压缩后的准确度.试验结果表明,YOLOv3-MobileNetV3网络模型较YOLO