论文部分内容阅读
为了提高三维点云配准的性能,采用基于分层粒子群优化的迭代最近点算法来完成点云配准;首先将源点云作为粒子群粒子,将粒子分成多个子群,然后以点云的曲率为适应度值,分别求解子群适应度值和全局粒子适应度值,并将子群适应度值、全局粒子适应度值和粒子当前速度三者结合,共同搜寻最优粒子,以得到能够精确表达点云结构的特征点,最后采用迭代最近点算法对特征点进行配准。仿真结果表明,通过合理设置粒子速度权重和子群规模,相对于标准迭代最近点算法,分层粒子群优化算法的三维点云配准效率提升显著,配准均方误差略有减小。