论文部分内容阅读
短期负荷预测是电力系统管理的一项重要方法,准确的负荷预测可以保证用户得到安全、经济、合理的供电。针对负荷预测方法的多样性。在传统的BP网络用于负荷预测的基础上,提出粒子群PSO(Particle Swarm Optimizer)优化神经网络权值的算法。并应用到电力系统短期负荷预测中。仿真结果表明PSO优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也明显地得到提高。