论文部分内容阅读
作者针对BP神经网络结构设计中存在的问题,提出利用灵敏度分析方法对BP神经网络预测模型进行优化。通过BP算法与参数灵敏度分析的结合,寻找网络输入属性与输出属性之间的影响因子;在保证精度的前提下优选网络输入属性,简化网络结构,以增强网络的泛化能力,减少人为主观因素对网络设计的影响。最后以海洋油气资源预测为例,结合实测资料建立BP神经网络预测模型并进行了优化及预测精度评价,表明优化后的模型既能有效提高油气资源预测结果的稳定性,又不损失预测精度。