论文部分内容阅读
摘 要:对一个城市建设进行综合评价是保证城市建设能够正常按期完成的基础。在分析层次分析法(AHP)和模糊评价法这两种评价方法的基础上,结合这两种方法的优点,以AHP法确定评价目标的各个主要影响因素所占权重的基础上,针对城市建设方案评价的特点,以模糊评价法对某地城市建设进行评价,实证分析得出结果表明:该方法具有两种方法的优点,能够较好的得到评价结果,具有很强的客观性。
关键词:城市建设 层次分析法(AHP) 模糊综合评价 权重
中图分类号:F291 文献标识码:A 文章编号:1007-3973(2013)011-105-03
1 引言
城市建设的评价是城市价值工程的重要内容,对城市建设的科学性评价尤为重要,将直接影响方案选择的正确性,传统的评价方法主要是加法平均法、加权评价法、比较值法、环比评分法、强制评分法、几何评分法等,这些都是在利用该种方法的运算法则进行分值评价,目标评价的影响因素的优劣程度难以进行具体分值评价,在这些评价过程中常常采用“差、一般、较好、满意、好”等模糊语句来描述,这就给评价工作带来了困难。层次分析法(AHP)是一种定性分析到定量分析的一种典型的系统工程评价方法,它将人们对复杂系统的思维过程进行数学化,由人的主观判断为主的定性分析进行定量化,将各种判断要素之间的差异进行数值化,帮助人们保持思维过程的一致性,适用于复杂的模糊综合评价系统,是确定权重的一种广泛使用的方法。模糊综合评价方法是一种在模糊环境下,考虑多种因素影响,对评判对象的所有因素进行逐一评价,是一种对多因素、多层次复杂问题综合评价的好方法。因此本文利用层次分析法(AHP)与模糊综合评价相结合的方法对某地城市新区建设进行评价,让评价结果更合理、科学。
2 AHP的原理和步骤
层次分析法是20世纪70年代由美国运筹学家T.L.Satty等人提出的一种定性与定量相结合的多准则决策方法,通过分析评价对象所包含的因素之间关系,构造层次分析结构模型,将各层次之间的要素进行两两比较,按照一定的标度理论,构造各层次要素之间相对重要度的判断矩阵,计算该判断矩阵的最大特征值、特征向量,从而得到权重向量。其步骤如下:
2.1 建立判断矩阵
由层次模型之间各层次之间相互关系建立判断矩阵A,A=(aij)n€譶,用A.L.Saaty等人提出的1-9标度法,具体:1表示两个元素相比,具有同样的重要性、3表示两个元素相比,前者比后者稍重要、5表示两个元素相比,前者比后者明显重要、7表示两个元素相比,前者比后者极其重要、9表示两个元素相比,前者比后者强烈重要、2,4,6,8表示上述相邻判断的中间值。若元素i和元素j的重要性之比为aij,那么元素与元素的重要性之比为aji=1/aij。
2.2 和积法确定指标权重
按列将矩阵A规范化,将每一列处理后的判断矩阵按行相加为wi=pij,归一化处理,即:为所求特征向量,分量为各个层次影响因素的权重。
2.3 计算最大特征根
2.4 一致性检验
一致性指标(n为判断矩阵阶数)。
一致性比率,当就认为矩阵具有满意的一致性。否则修改判断矩阵。
3 模糊综合评价原理
模糊综合评价是以1965年由美国加州大学控制论专家扎德发表一篇题为《模糊集合》的论文从而诞生了模糊数学,在这一基础上,应用模糊关系合成原理,将一些模糊现象,从多个因素对被评对象隶属情况进行综合评价的方法,能够很好的评价影响城市建设中的模糊问题。其具体步骤:
3.1 确定评价因素指标和评价等级
根据实际情况确立评价因素和评价等级。分别记为:
3.2 构造隶属矩阵
隶属矩阵,其中:为隶属度,即:第i个因素在第j个评价等级上的频率分布,需要满足rij=1,如果不满足,就将其做归一化处理,得到隶属矩阵。
3.3 计算评价结果
在由AHP确定权重和构建隶属矩阵R的基础上,计算综合评价结果。
其中*为模糊算子符号。常常采取的模糊算子有:Zadeh算子、加权平均法等,在实际问题中,一方面我们应该根据具体情况,采用合适的算子,满足,达到评价满意的效果。另一方面满足0< 4 实例应用
该城市建设方案有高、中、低三个发展方案。高发展方案投入大量资金发展工业,工业总产值快速增长;中发展方案协调经济、环境保护、生态建设等多个目标;低发展方案充分考虑环境保护,控制经济发展速度,工业总产值保持相对较低的速度。根据该城市建设的需求建立一个合理的指标评价集合。考虑到因素众多,为达到评价效果,经过筛选,建立如图1所示的评价层次结构。
4.1 确定因素集
根据模糊评价法建立因素集,经过充分的调查研究,确定该城市建设评价的主因素集为其子因素层如图1所示。
4.2 确定模糊权重
通过专家评定得到各个因素重要性判断矩阵如下:
对于表2,
矩阵具有满意的一致性。
对于表3,
矩阵具有满意的一致性。
对于表4,
矩阵具有满意的一致性。
对于表5,
矩阵具有满意的一致性。
4.3 构造隶属度矩阵
由于该评价体系因素较多,系统复杂,许多因素具有模糊性,根据专家打分,可得下列子因素层的模糊矩阵:
4.4 模糊综合评价
用运算规则为:来计算,可得每层次综合评价结果,,其中:。;;
令
由归一化结果可以看出:3个方案的综合评判结果的排序为:中发展方案、低发展方案、高发展方案。选出较高的估计值的方案作为城市建设评价的方案。
5 小结
用AHP和模糊综合评价法对城市规划建设评价,能够在定性分析与定量分析相结合下确定因素的权重,得出综合评价结果,为今后科学决策提供了依据。
(基金项目:贵州民族大学2013年科研基金资助项目:基于AHP的六盘水煤炭资源开发利用状况评价研究。)
参考文献:
[1] 黄灏然,俞守华,周玉意.基于AHP 的模糊综合评价方法在方案评价中的应用[J].价值工程,2007(1):84-86.
[2] 比哓丽,洪伟.生态环境综合评价方法的研究进展[J].农业系统科学与综合研究,2001,17(2):122-126.
[3] 许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社,2000.
[4] 金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社,2002.
[5] 汪应洛.系统工程(第2 版)[M].北京:机械工业出版社,2001.
[6] 胡运权.运筹学教程(第3版)[M].北京:清华大学出版社,2007.
[7] 杜栋.现代综合评价方法与案例分析[M].北京:清华大学出版社,2008.
[8] 谢丽娟.模糊综合评判中合成算子的选取[J].科协论坛,2012(9):103-104.
[9] 孔江.城市建设评价指标体系与方法研究[D].昆明:昆明理工大学,2002.
关键词:城市建设 层次分析法(AHP) 模糊综合评价 权重
中图分类号:F291 文献标识码:A 文章编号:1007-3973(2013)011-105-03
1 引言
城市建设的评价是城市价值工程的重要内容,对城市建设的科学性评价尤为重要,将直接影响方案选择的正确性,传统的评价方法主要是加法平均法、加权评价法、比较值法、环比评分法、强制评分法、几何评分法等,这些都是在利用该种方法的运算法则进行分值评价,目标评价的影响因素的优劣程度难以进行具体分值评价,在这些评价过程中常常采用“差、一般、较好、满意、好”等模糊语句来描述,这就给评价工作带来了困难。层次分析法(AHP)是一种定性分析到定量分析的一种典型的系统工程评价方法,它将人们对复杂系统的思维过程进行数学化,由人的主观判断为主的定性分析进行定量化,将各种判断要素之间的差异进行数值化,帮助人们保持思维过程的一致性,适用于复杂的模糊综合评价系统,是确定权重的一种广泛使用的方法。模糊综合评价方法是一种在模糊环境下,考虑多种因素影响,对评判对象的所有因素进行逐一评价,是一种对多因素、多层次复杂问题综合评价的好方法。因此本文利用层次分析法(AHP)与模糊综合评价相结合的方法对某地城市新区建设进行评价,让评价结果更合理、科学。
2 AHP的原理和步骤
层次分析法是20世纪70年代由美国运筹学家T.L.Satty等人提出的一种定性与定量相结合的多准则决策方法,通过分析评价对象所包含的因素之间关系,构造层次分析结构模型,将各层次之间的要素进行两两比较,按照一定的标度理论,构造各层次要素之间相对重要度的判断矩阵,计算该判断矩阵的最大特征值、特征向量,从而得到权重向量。其步骤如下:
2.1 建立判断矩阵
由层次模型之间各层次之间相互关系建立判断矩阵A,A=(aij)n€譶,用A.L.Saaty等人提出的1-9标度法,具体:1表示两个元素相比,具有同样的重要性、3表示两个元素相比,前者比后者稍重要、5表示两个元素相比,前者比后者明显重要、7表示两个元素相比,前者比后者极其重要、9表示两个元素相比,前者比后者强烈重要、2,4,6,8表示上述相邻判断的中间值。若元素i和元素j的重要性之比为aij,那么元素与元素的重要性之比为aji=1/aij。
2.2 和积法确定指标权重
按列将矩阵A规范化,将每一列处理后的判断矩阵按行相加为wi=pij,归一化处理,即:为所求特征向量,分量为各个层次影响因素的权重。
2.3 计算最大特征根
2.4 一致性检验
一致性指标(n为判断矩阵阶数)。
一致性比率,当就认为矩阵具有满意的一致性。否则修改判断矩阵。
3 模糊综合评价原理
模糊综合评价是以1965年由美国加州大学控制论专家扎德发表一篇题为《模糊集合》的论文从而诞生了模糊数学,在这一基础上,应用模糊关系合成原理,将一些模糊现象,从多个因素对被评对象隶属情况进行综合评价的方法,能够很好的评价影响城市建设中的模糊问题。其具体步骤:
3.1 确定评价因素指标和评价等级
根据实际情况确立评价因素和评价等级。分别记为:
3.2 构造隶属矩阵
隶属矩阵,其中:为隶属度,即:第i个因素在第j个评价等级上的频率分布,需要满足rij=1,如果不满足,就将其做归一化处理,得到隶属矩阵。
3.3 计算评价结果
在由AHP确定权重和构建隶属矩阵R的基础上,计算综合评价结果。
其中*为模糊算子符号。常常采取的模糊算子有:Zadeh算子、加权平均法等,在实际问题中,一方面我们应该根据具体情况,采用合适的算子,满足,达到评价满意的效果。另一方面满足0<
该城市建设方案有高、中、低三个发展方案。高发展方案投入大量资金发展工业,工业总产值快速增长;中发展方案协调经济、环境保护、生态建设等多个目标;低发展方案充分考虑环境保护,控制经济发展速度,工业总产值保持相对较低的速度。根据该城市建设的需求建立一个合理的指标评价集合。考虑到因素众多,为达到评价效果,经过筛选,建立如图1所示的评价层次结构。
4.1 确定因素集
根据模糊评价法建立因素集,经过充分的调查研究,确定该城市建设评价的主因素集为其子因素层如图1所示。
4.2 确定模糊权重
通过专家评定得到各个因素重要性判断矩阵如下:
对于表2,
矩阵具有满意的一致性。
对于表3,
矩阵具有满意的一致性。
对于表4,
矩阵具有满意的一致性。
对于表5,
矩阵具有满意的一致性。
4.3 构造隶属度矩阵
由于该评价体系因素较多,系统复杂,许多因素具有模糊性,根据专家打分,可得下列子因素层的模糊矩阵:
4.4 模糊综合评价
用运算规则为:来计算,可得每层次综合评价结果,,其中:。;;
令
由归一化结果可以看出:3个方案的综合评判结果的排序为:中发展方案、低发展方案、高发展方案。选出较高的估计值的方案作为城市建设评价的方案。
5 小结
用AHP和模糊综合评价法对城市规划建设评价,能够在定性分析与定量分析相结合下确定因素的权重,得出综合评价结果,为今后科学决策提供了依据。
(基金项目:贵州民族大学2013年科研基金资助项目:基于AHP的六盘水煤炭资源开发利用状况评价研究。)
参考文献:
[1] 黄灏然,俞守华,周玉意.基于AHP 的模糊综合评价方法在方案评价中的应用[J].价值工程,2007(1):84-86.
[2] 比哓丽,洪伟.生态环境综合评价方法的研究进展[J].农业系统科学与综合研究,2001,17(2):122-126.
[3] 许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社,2000.
[4] 金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社,2002.
[5] 汪应洛.系统工程(第2 版)[M].北京:机械工业出版社,2001.
[6] 胡运权.运筹学教程(第3版)[M].北京:清华大学出版社,2007.
[7] 杜栋.现代综合评价方法与案例分析[M].北京:清华大学出版社,2008.
[8] 谢丽娟.模糊综合评判中合成算子的选取[J].科协论坛,2012(9):103-104.
[9] 孔江.城市建设评价指标体系与方法研究[D].昆明:昆明理工大学,2002.