论文部分内容阅读
The crystalline materials Ca3Sc2Si3O12 and Ca3Y2Si3O12 were characterized by different crystal structures, as the former is a cubic garnet, while the latter is an orthorhombic compound. We investigated the optical spectroscopy of these materials doped with several trivalent lanthanide ions and compared the results for the two hosts. Polycrystalline samples were prepared by solid state reaction, both undoped and doped with the trivalent lanthanide ions Eu3+, Tb3+ and Sm3+. Emission, excitation and Raman spectra of these materials were measured at temperatures ranging from 300 to 10 K. The optical spectra were assigned and discussed, and the effects of the crystal structure of the host on the spectroscopic behaviour were addressed. The technological potential of these compounds in the field of optical materials and devices was discussed.
The crystalline materials Ca3Sc2Si3O12 and Ca3Y2Si3O12 were characterized by different crystal structures, as the former is a cubic garnet, while the latter is an orthorhombic compound. We investigated the optical spectroscopy of these materials doped with several trivalent lanthanide ions and compared the results for the two hosts. Polycrystalline samples were prepared by solid state reaction, both undoped and doped with the trivalent lanthanide ions Eu3 +, Tb3 + and Sm3 +. Emission, excitation and Raman spectra of these materials were measured at temperatures ranging from 300 to 10 K. The optical spectra were assigned and discussed, and the effects of the crystal structure of the host on the spectroscopic behavior were addressed. The technological potential of these compounds in the field of optical materials and devices was discussed.