论文部分内容阅读
为提高径向基神经网络(RBF)在年径流预测中精度,提出基于Adaboost算法及线性递减算法改进的RBF-Adaboost预测模型,以云南省姑老河站年径流预测为例进行实例研究,并构建RBF、GA-BP及BP模型作为对比模型。利用实例前34年和后20年资料对所构建的模型进行训练和预测。结果表明:改进RBF-Adaboost模型对实例后20年年径流预测的平均相对误差绝对值和最大相对误差绝对值分别为4.83%、9.51%,预测精度优于RBF、GA-BP及BP模型。RBF-Adaboost模型集成了多个基于扩展系