【摘 要】
:
The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring co
【机 构】
:
DTUFotonik,TechnicalUniversityofDenmark,2800Kgs.Lyngby,DenmarkMaxPlanckInstituteforPolymerResearch,A
【出 处】
:
PhotonicsResearch
论文部分内容阅读
The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.
其他文献
High harmonic generation in gas jets was investigated in different gases up to more than 14 bar backing pressure. The observation of increase of harmonic intensity with increasing pressure and laser intensity shows evidence of the presence of clusters in
本文分析了紫外准分子激光对有机材料的消融过程,用理论模型解释了每个激光脉冲对有机材料的消融量与入射激光能量密度之间的关系.对于有机玻璃.当入射激光能量密度较高时,双光子过程将起主要作用.最后讨论了消融率随有机材料吸收系数之间的关系,对吸收系数较小的材料,消融率随吸收系数改变有一个极大值.
运用等效层理论,设计了一种目标波长分别为780,810,850 nm,在45°入射角下使用的反射镜,该反射镜在保证膜层高反射率的同时实现了对偏振和相位的调控。为了在较宽波段上满足平均反射率高的要求,选用金属银和Ta2O5、SiO2作为光学薄膜的材料。采用电子束蒸发和热蒸发方式并配合石英晶体振荡监控膜厚等工艺,在JGS-1石英基底上获得了500~1600 nm波段范围内平均反射率大于95%,目标波长下消光比分别优于3000∶1、5000∶1和7000∶1的反射镜膜系。所设计的反射镜可以满足空间环境下量子通信
针对单道激光熔覆,利用数值模拟技术得到了激光熔覆过程的温度场;在Q235钢表面制备了Ni基激光熔覆层,基于材料相变理论分析了熔覆层不同深度位置微观组织的形成机理,并研究了添加CeO2、TiO2纳米颗粒对熔覆层组织的影响。结果表明:在激光熔覆过程中,在激光辐照和热传导的共同作用下,熔覆层和基体不同深度区域因温度变化的差异而发生不同类型的相变,从而得到不同的微观组织;在熔覆粉末中添加CeO2、TiO2纳米颗粒,可以通过影响
量子纠缠是实现量子通信和量子计算的重要资源,其中多体纠缠更是构建量子网络实现全局量子计算的基础。本文主要研究如何利用经典的光子回声技术实现光量子态的三体纠缠。在自由空间中向掺杂稀土离子的固态离子系综中射入经典光场,当离子体系达到相位重构条件时即可获得三束存在纠缠的量子光场。基于本方案纠缠产生的技术特点,发现其在提高量子中继器的工作效率上有着潜在的应用价值。
研究了依赖强度耦合J-C模型场熵演化的动力学特性,考察了原子相干性对场熵演化的影响。
The energy levels, wave functions and the second-order nonlinear susceptibilities are calculated in GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As asymmetric quantum well (AQW) by using an asymmetric model based on the paraboli
激光本身是很有用的:它能切割金属、烧掉肿瘤,负载信息和制作全光照片……。 但是,如果光束离开激光器之后,能把它放在适当的位置,则将有更多的用途。国际商业机械公司系统发展装置部正根据与陆军电子学司令部签订的合同工作,已发展了实现这种作用的实验装置。
We present a high-transmittivity non-periodic sub-wavelength high-contrast grating (HCG) with large-angle beam-steering ability for transmitted light. The phase front profile of transmitted light is a decisive factor to the beam-steering property of the H