论文部分内容阅读
针对专家系统知识库中的知识具有模糊特性以及知识库需要频繁更新的特点,设计了一种基于模糊Petri网的动态知识表示与推理方法。该方法利用实际环境中的数据,通过学习来调整知识模型的权值、阈值和确信度等参数,从而实现知识库的动态实时更新。此方法同时结合了产生式知识表示方式和神经网络知识表示方式的优点:知识模型结构清晰,参数意义明确;具有学习和并行推理能力。仿真实验结果表明,经过训练调整后的知识模型具有更高的准确度。