人体动作识别中基于HTM架构的时空特征提取方法

来源 :计算机应用研究 | 被引量 : 3次 | 上传用户:xd05724221
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对人体动作识别中时空特征提取问题,提出一种基于层次时间记忆(HTM)架构的深度学习模型,用来提取图像帧的时空特征。将图像帧构建成树型节点层次结构,在每一层中,通过欧氏距离分组来提取图像样本的空间特征,利用时间邻接矩阵提取样本的时间特征,利用置信传播方法将各层局部特征组进行汇总归类,得到整体特征组,作为该图像帧的时空特征。此外,在节点操作中引入张量代数,从而避免出现高维特征,将特征送入支持向量机(SVM)分类器进行识别分类。在MSR Gesture 3D和KTH动作数据库上的实验结果表明,提出的方法
其他文献
为了模拟信息在微博环境中的传播情况,根据微博用户行为(发布、关注、转发和评论等)和微博内容,提出一种融合用户行为和内容的微博用户影响力算法。通过对微博用户行为的分析得到
针对复杂系统故障诊断中诊断精度低、虚警率高的问题,进行了不可靠测试条件下基于Rollout算法的诊断策略优化方法研究。建立综合考虑测试点的故障检测能力、信息量、测试费用
微博服务已经成为加强人们互相沟通的重要媒体。微博的信息扩散能够带来巨大的商业价值,同时也为谣言的传播提供了良好滋润环境。如果能够预测某个信息是否会被爆发式地传播,以
针对现有的企业运行指标分析方法只强调动态或静态信息,不易实现二者结合的情况,建立了用于企业运行指标因果分析的动态贝叶斯网络模型,这种模型可将时间片间的指标动态时序因果关系与时间片内指标静态因果联系融为一体,并通过量化推理进行动态与静态因果分析。通过与领域专家交流,所建立的企业运行指标动态贝叶斯网络良好地反映了数据中所蕴涵的因果关系。
针对一个制造商和一个客户组成的供应链,考虑工件有交货期限约束且不允许延迟送达客户处,对平行机加工环境下的供应链排序问题进行了研究。为了实现从日常调度层面对工件加工
针对随机初始化方式对混合条件属性数据对象的适应调整能力非常低,且其任意性的本质特征,会造成聚类质量大幅度下降的缺陷,提出通过分类条件属性对象的熵值与数值条件属性对象的
针对K-means算法依赖于初始聚类中心和易陷入局部最优解的缺陷,提出一种改进的求解聚类问题的差分进化算法。将改进的差分进化算法与K-means迭代相结合,使算法对初始聚类中心的
针对目前基于用户签到的地点推荐方法忽略了用户未评分的项集以及忽视了用户签到次数的差异,以及基于社交影响的地点推荐算法中缺乏对用户之间必要的相关性描述的情况,提出一
流形排序算法被广泛地应用到半监督学习领域中,然而其性能紧紧依赖于底层图结构。针对现有的流形排序算法效果欠佳的现状,提出了一种全新的图结构——自然邻居图,这种图能自
为实现相同个体在不同呼吸状态下产生较大形变的三维肺部医学影像配准,提出一种基于改进Demons算法的精确有效配准方案。对待配准影像进行全局非刚性配准,通过尺度不变特征变