论文部分内容阅读
软测量模型建立前对建模数据进行过失误差侦破与剔除,是确保数据质量、成功建立软测量模型的先决条件。针对软测量建模过程中建模数据过失误差侦破的特殊性,提出了一种适用于软测量数据的中心欧氏距离聚类算法(CED),这种新方法依据各数据点到数据中心的欧氏距离来判定过失误差,脱离了传统过失误差侦破方法依赖于机理模型的束缚,更好地适应了软测量的特点。针对单纯使用聚类算法实现过失误差侦破的不足,将其与软测量建模过程相结合,将建模误差作为过失误差侦破过程的指导,使其克服了由于单纯基于数据而存在的缺陷,并且在完成过失误