论文部分内容阅读
单词表示作为自然语言处理的基本问题,一直广受关注.传统的独热表示丢失了单词间的语义关联,因而在实际使用中易受数据稀疏问题困扰.而分布式表示通过将单词表示为低维稠密实数向量,捕捉单词间的关联信息.该表示方式可在低维空间中高效计算单词间的语义关联,有效解决数据稀疏问题.作为神经网络模型的基本输入,单词分布式表示伴随着深度学习被广泛应用于自然语言处理领域的方方面面.从早期的隐式语义分析,到最近的神经网络模型,研究人员提出了各种各样的模型来学习单词的分布式表示.本文梳理了单词分布式表示学习的发展脉络,并从模型利用