论文部分内容阅读
【摘要】数学教学的主要目的就是在于培养学生独立思维的能力,拓展学生的思维,培养学生的技能,并在实际生活中应用。导入新课的方式,必须根据学生实际和教材的切入点,采取不同的语言和教学方式,做到“因材施教”,才能达到教学的预期目的。
【关键词】数学课堂;导入技能;艺术;兴趣
俗话说,万事开头难,良好的开头是成功的一半,一节课的成功与失败关键在于教师新课导入得好不好。教师讲课导入得好,不仅能唤起学生的求知欲望,而且还可以燃起学生智慧的火花,主动去获取知识。几年来,本人一直努力探索和试验,总结出了数学课的几种导入方法。所谓导入,就是教师在讲课之前,围绕教学目标精心设计的一种教学语言与方法,短则一两分钟,长不过五六分钟,导入要体现本课时的重点、难点,要具有概括力和趣味性,能激起学生的学习兴趣,激发学生的求知欲;具有鼓动性,能调动学生的课堂情绪,使之跃跃欲试;具有启发性,能激发学生的智力活动,引起思索,吸引学生的注意力;有一定的情感性,起到缩小师生之间心理距离的作用。精彩的导入,是开启新课的钥匙,引导学生登堂入室,是承前启后的桥梁,使学生循“故”而知新;是乐章的序曲,使学生感受到整个乐章的基本的旋律,是感情的起博器,激起学生心海的波澜。应该精当、精彩,切忌庞杂繁琐。精彩的导入,会使下面的教学活动更加流畅,因此,结合近十年的数学教学经历,我总结出以下几种导入方式。
一、运用多媒体优化导入
数学课缺乏趣味性,这就要求教师有意设置悬念,使学生产生探求问题奥秘所在的心理,即“疑中生奇”,从而达到“疑中生趣”,由此激发学习兴趣,多媒体在这方面的运用,能得到充分的体现。比如:讲一元二次方程根与系数的关系时,可利用多媒体提出问题:“方程 3X2-X-4=0的一个根为X1=-1,不解方程求出另一根X2”,解决这个问题的学生感到困难,教师可点拨做出判断:“由于c/a=-4/3,所以X2=-4/3÷(-1)=4/3,请同学们验算。”当学生确信答案正确时,就激发了学生的好奇心理,使之处于一种“心欲求而尚不得,口欲言而尚不能”的心理状态,此时学生都急于想弄清“为什么?”,此时教师接着说明“一元二次方程根与系数之间存在一种特殊关系,我是据此求X2的,这正是我们今天所要学习的。”短短几句话,就激发了学生的求知兴趣。多媒体在此处的运用,极大调动了学生的积极性。当然,设置悬念要注意适度,不“悬”学生不思解,达不到激发学习兴趣的目的;太“悬”学生望而生畏,百思而不得其解,也不会收到好的效果。
二、温固知新导入
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即 “圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
三、实际应用的导入
数学教学的目的就是为了让学生能够解决现实生活中、工农业生产中的实际问题。如果在教学中以实际应用引入新课,则能吸引学生,使学生精力集中,学习兴趣盎然。但所提出的问题必须就是学生思考过,但又无法解决的问题,如果学生带着求知目标投入到学习中,必然使教学达到事半功倍的效果。如在讲“用字母表示数”时,本人用多媒体播放一些现实生活中常用一些符号所表示某种特定意义,如天气预报图标,交通标志,五线谱等资料给学生看,或再举一个“失物招领”的例子:“小明拾到人民币a元,请失主到教导处认领”,引导学生思考“a表示什么?”“用a表示有什么好处?”来引入新课。当然列举的实例子要贴近学生生活,或使用大多数人熟悉的例子。否则就起不到应有的教学效果。
四、演示教具导入
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠ BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
五、运用类比的方法导入
“类比是提出新问题和获得新发现取之不竭的泉源。”类比导入是通过比较两个或两类数学对象的共同属性来引入新课的方法。如果已知的数学对象比较熟悉, 新的数学对象通过与已知的数学对象类比,那么引入就比较自然。物理学家开普勒曾经说过:“我们珍视类比胜于任何东西,它是我最可信赖的老师,它能提示自然界的秘密,在几何中,它们是最不容忽视的”。由于初中数学内容具有较强的系统性,前后知识衔接紧密,所以由类比导入新课在初中数学教学中最为常见。例如,分式与分数在表达形式、基本性质、运算法则等方面都非常相似, 如果在教学分式时, 引导学生将分式与分数进行类比, 则关于分式的教学将会更加自然顺利。又如,讲解不等式的解法时可用方程的解法类比,这样既能使学生抓住共同点,又能使学生认清不同点。采用这种方法导入新课,是培养学生合情推理的重要手段。教师施展自己的才能挖掘教材中可作类比的内容来导入新课,必然会使学生从中学到运用类比的思维方法去猜测和发现新问题及解决问题的方法,并且尝到由此带来的乐趣,提高学习的积极性。
综上所述,初中数学的导入法教学是新课标下的最适合学生的一种教学方法,它是课堂教学的序幕,也是课堂教学的重要环节。常言道“良好的开端是成功的一半”,教师有创意的导入,有利于引发学生的学习兴趣,有利于形成学生积极热烈的学习情感。
【关键词】数学课堂;导入技能;艺术;兴趣
俗话说,万事开头难,良好的开头是成功的一半,一节课的成功与失败关键在于教师新课导入得好不好。教师讲课导入得好,不仅能唤起学生的求知欲望,而且还可以燃起学生智慧的火花,主动去获取知识。几年来,本人一直努力探索和试验,总结出了数学课的几种导入方法。所谓导入,就是教师在讲课之前,围绕教学目标精心设计的一种教学语言与方法,短则一两分钟,长不过五六分钟,导入要体现本课时的重点、难点,要具有概括力和趣味性,能激起学生的学习兴趣,激发学生的求知欲;具有鼓动性,能调动学生的课堂情绪,使之跃跃欲试;具有启发性,能激发学生的智力活动,引起思索,吸引学生的注意力;有一定的情感性,起到缩小师生之间心理距离的作用。精彩的导入,是开启新课的钥匙,引导学生登堂入室,是承前启后的桥梁,使学生循“故”而知新;是乐章的序曲,使学生感受到整个乐章的基本的旋律,是感情的起博器,激起学生心海的波澜。应该精当、精彩,切忌庞杂繁琐。精彩的导入,会使下面的教学活动更加流畅,因此,结合近十年的数学教学经历,我总结出以下几种导入方式。
一、运用多媒体优化导入
数学课缺乏趣味性,这就要求教师有意设置悬念,使学生产生探求问题奥秘所在的心理,即“疑中生奇”,从而达到“疑中生趣”,由此激发学习兴趣,多媒体在这方面的运用,能得到充分的体现。比如:讲一元二次方程根与系数的关系时,可利用多媒体提出问题:“方程 3X2-X-4=0的一个根为X1=-1,不解方程求出另一根X2”,解决这个问题的学生感到困难,教师可点拨做出判断:“由于c/a=-4/3,所以X2=-4/3÷(-1)=4/3,请同学们验算。”当学生确信答案正确时,就激发了学生的好奇心理,使之处于一种“心欲求而尚不得,口欲言而尚不能”的心理状态,此时学生都急于想弄清“为什么?”,此时教师接着说明“一元二次方程根与系数之间存在一种特殊关系,我是据此求X2的,这正是我们今天所要学习的。”短短几句话,就激发了学生的求知兴趣。多媒体在此处的运用,极大调动了学生的积极性。当然,设置悬念要注意适度,不“悬”学生不思解,达不到激发学习兴趣的目的;太“悬”学生望而生畏,百思而不得其解,也不会收到好的效果。
二、温固知新导入
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即 “圆”内两条相交弦被交点分成的两条线段长的积相等。然后移动两弦使其交点在圆外有三种情况。这样学生较易理解切割线定理、推论的数学表达式,在此基础上引导学生叙述定理内容,并总结圆幂定理的共同处是表示线段积相等。区别在于相交弦定理是交点内分线段,而切割线定理,推论是外分线段、切线上定理的两端点重合。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握了证明线段积相等的方法。
三、实际应用的导入
数学教学的目的就是为了让学生能够解决现实生活中、工农业生产中的实际问题。如果在教学中以实际应用引入新课,则能吸引学生,使学生精力集中,学习兴趣盎然。但所提出的问题必须就是学生思考过,但又无法解决的问题,如果学生带着求知目标投入到学习中,必然使教学达到事半功倍的效果。如在讲“用字母表示数”时,本人用多媒体播放一些现实生活中常用一些符号所表示某种特定意义,如天气预报图标,交通标志,五线谱等资料给学生看,或再举一个“失物招领”的例子:“小明拾到人民币a元,请失主到教导处认领”,引导学生思考“a表示什么?”“用a表示有什么好处?”来引入新课。当然列举的实例子要贴近学生生活,或使用大多数人熟悉的例子。否则就起不到应有的教学效果。
四、演示教具导入
演示教具导入法能使学生把抽象的东西,通过演示教具形象、具体、生动、直观地掌握知识。例如:在讲弦切角定义时,先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与园相交成圆周角∠ BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。
五、运用类比的方法导入
“类比是提出新问题和获得新发现取之不竭的泉源。”类比导入是通过比较两个或两类数学对象的共同属性来引入新课的方法。如果已知的数学对象比较熟悉, 新的数学对象通过与已知的数学对象类比,那么引入就比较自然。物理学家开普勒曾经说过:“我们珍视类比胜于任何东西,它是我最可信赖的老师,它能提示自然界的秘密,在几何中,它们是最不容忽视的”。由于初中数学内容具有较强的系统性,前后知识衔接紧密,所以由类比导入新课在初中数学教学中最为常见。例如,分式与分数在表达形式、基本性质、运算法则等方面都非常相似, 如果在教学分式时, 引导学生将分式与分数进行类比, 则关于分式的教学将会更加自然顺利。又如,讲解不等式的解法时可用方程的解法类比,这样既能使学生抓住共同点,又能使学生认清不同点。采用这种方法导入新课,是培养学生合情推理的重要手段。教师施展自己的才能挖掘教材中可作类比的内容来导入新课,必然会使学生从中学到运用类比的思维方法去猜测和发现新问题及解决问题的方法,并且尝到由此带来的乐趣,提高学习的积极性。
综上所述,初中数学的导入法教学是新课标下的最适合学生的一种教学方法,它是课堂教学的序幕,也是课堂教学的重要环节。常言道“良好的开端是成功的一半”,教师有创意的导入,有利于引发学生的学习兴趣,有利于形成学生积极热烈的学习情感。