论文部分内容阅读
针对现有学习算法难以有效提高不均衡在线贯序数据中少类样本分类精度的问题,提出一种基于不均衡样本重构的加权在线贯序极限学习机。该算法从提取在线贯序数据的分布特性入手,主要包括离线和在线两个阶段:离线阶段主要采用主曲线构建少类样本的可信区域,并通过对该区域内样本进行过采样,来构建符合样本分布趋势的均衡样本集,进而建立初始模型;而在线阶段则对贯序到达的数据根据训练误差赋予各样本相应权重,同时动态更新网络权值。采用UCI标准数据集和澳门实测气象数据进行实验对比,结果表明,与现有在线贯序极限学习机(OS-EL